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Abstract—Personal and wearable computing are moving to-
ward smaller and more seamless devices. We explore how this
trend could be mirrored in an authentication scheme based on
electroencephalography (EEG) signals collected from the ear. We
evaluate this model using a low cost, single-channel, consumer
grade device for data collection. Using data from 12 study
participants who performed a set of 5 mental tasks, we achieve
a 44% reduction in half total error rate (HTER) compared
with a random classifier, corresponding to a 72% authentication
accuracy in within-participants analyses and a 60% reduction
and 80% accuracy in between-participant analyses. Given our
results and those of previous research, we conclude that earEEG
shows potential as a uniquely convenient authentication method
as it is integrable into devices like earbud headphones already
commonly worn in the ear, and the mental gestures generating
the signal are invisible to would-be eavesdroppers.

I. INTRODUCTION

Personal and wearable computing devices are moving to-
ward smaller sized or altogether absent display space and
input methods aimed at simplified and effortless interactions.
To maintain their utility, these devices allow access to personal
and potentially sensitive information, therefore their security
should also be at the forefront of necessary considerations. In
this research, we explore earEEG as an authentication method
with the potential to combine powerful protection, unobtrusive
interaction, and a high degree of usability.

Secure methods for a system to authenticate a user can be
grouped into three factors: inherence, something unique to the
user like a fingerprint; knowledge, something only known to
the user like a written password; and possession, a unique
physical object owned by the user. One very commonly used
method of authentication, a typed password, takes advantage of
only the knowledge factor and by consequence a system can be
easily tricked by an intruder who learns this password. Multi-
factor methods that utilize multiple distinct factors, such as the
practice of requiring both a memorized password and a code
sent to a user’s mobile phone via text message (knowledge and
possession factors, respectively), greatly enhance security. As
evidenced by this example however, multi-factor authentica-
tion can quickly become frustrating and cumbersome, adding
additional unwanted steps to actions that may occur very
frequently throughout a single day, such as logging in to an
e-mail account or unlocking a mobile phone. Considering the
proximity of wearables to the body and recent improvements
in the collection and processing capabilities of biosignals,
biosensory authentication methods can elegantly allow for
multi-factor authentication without additional steps.

Electroencephalography (EEG), the measurement of neu-
ronal electrical activity most typically non-invasively via elec-

trodes (called channels) arranged on the scalp, is one such
form of biosignal collection that can naturally employ both in-
herence and knowledge factors. EEG had its origins in clinical
settings, used in the diagnosis and treatment of neurological
disorders such as epilepsy, but has more recently moved into
the general consumer market with several companies like
Neurosky [1] and Emotiv [2] making wireless EEG devices
available for personal use at prices as low as $100. One-
step two-factor authentication using EEG signals has shown
promise through a concept coined "passthoughts" which was
first postulated, to our knowledge, in 2005 [3], then im-
plemented and developed upon with expensive clinical-grade
technologies [4], [5], [6] and later with consumer grade multi-
channel [7] and single-channel [8] devices in 2011 and 2013,
respectively. Our study most closely follows that of Chuang et
al. (2013) who were able to achieve an authentication accuracy
of approximately 99% using a single-channel (with a ground
and reference ear clip) Neurosky Mindwave Mobile EEG
headset. Their study involved participants performing a variety
of mental tasks at a computer while wearing the headset.
Some tasks were predefined and uniform across all participants
like relaxed breathing, imaginary finger tapping, and an audio
stimulus, while others included something secret and specific
to each participant like imagining a chosen song, sport mo-
tion, or general thought. They concluded that single-channel
EEG authentication is possible, despite lower a signal-to-noise
(SNR) ratio, through customized task selections and signal
similarity thresholds for each user and that task difficulty and
level of engagement with the user should be leveraged in
pursuit of usability for repeated use.

For the use of EEG signals in such applications as au-
thentication to be feasible for widespread adoption and use,
the stability, comfort, and appearance of the device must
also be considered for the sake of the user and quality of
data. The novel technique of measuring EEG signals via
sensors placed only in or around the ear is one avenue
by which these qualities may be achieved. The concept of
earEEG has been explored and iterated upon in the last few
years showing great promise achieving usable SNR ratios for
the detection of auditory evoked potentials [9] and steady-
state visual evoked potentials (SSVEP) in a brain-computer
interface (BCI) reaching, on average, an accuracy level of
approximately 88% [10]. While these studies utilized costly
custom-fitted earpieces, generic silicon rubber earpieces may
also be feasible [11] and wet electrodes may not be necessary
to achieve desirable impedance levels [12]. Overall, earEEG is
an exciting sensing modality because it affords the necessary



data quality to carry out brain sensing functionalities, and from
the user’s perspective because, compared with scalp-based
EEG systems, it offers greater usability via discreet appearance
and improved comfort. Already, many people regularly wear
devices in their ears like earbud headphones, which could
potentially integrate earEEG.

By marrying the two novel concepts of passthoughts au-
thentication with single-channel earEEG data collection we
intend to implement and examine a streamlined one-step multi-
factor authentication process using a sensing device that is
comfortable, discreet, cheap, and highly wearable. This study
represents an initial step toward that goal as we investigate this
potential using a minimally modified consumer grade device.
We also discuss several ideas and opportunities for future
development and refinement of this promising approach to
effective and user-friendly security.

II. METHODS

A. Study Procedures

12 UC Berkeley graduate student participants (7 male, 5
female) with a mean age of 28 ± 4.36 completed our study
protocol approved by the UC Berkeley Committee for Pro-
tection of Human Subjects (CPHS). Study procedures began
with an informed consent process, followed by a demographics
questionnaire, a set up period with the earEEG device, com-
pletion of a set of 5 tasks presented on a laptop while EEG was
recorded, and finally a post-experiment questionnaire. We used
a Neurosky Mindwave Mobile wireless EEG headset, which
is sold online to the general public for $99.99. Modifications
made to the original included releasing the sensing electrode
from the plastic forehead arm, removing the electrode, and
replacing it by soldering a new 6 mm gold cup electrode onto
the original wire. The gold cup electrode was bent to allow
for a comfortable fit in a range of ear canal sizes. The device
being worn is shown in Figure 1.

Fig. 1: Modified Neurosky Mindwave setup.

The setup process with a participant was fairly simple:
the experimenter cleaned the electrode and the participant’s
ear canal with ethanol pads and cotton swabs, fastened the
earlobe clip containing the ground and reference, applied a
small amount of conductive gel to the electrode, and placed
the sensing electrode in the ear canal against the superior wall
(facing upward) with a rolled foam earplug placed beneath it
to keep the electrode comfortably in place. The Mindwave

device transmits data wirelessly via Bluetooth, so it was
paired and the connection was confirmed before beginning
the task phase of the experiment.

TABLE I: List of authentication tasks.

Task Name Description
Breath Relaxed breathing with eyes closed
Song Imagine a chosen song with eyes closed
Listen Listen to a 40 Hz tone with eyes closed
Face Imagine a chosen face with eyes closed
Cube Imagine a displayed cube is rotating with eyes open

Table I lists the tasks performed by participants. Instructions
for tasks were presented visually using PsychoPy [13] and read
aloud verbally by the experimenter. Each task was recorded
during two sets of 5 trials each to lessen boredom effects and
each trial was 12 seconds in length. Our paradigm synced the
earEEG recording with the start of each trial. We primarily
chose tasks that showed promise in previous passthoughts
experiments, though generally we found little research to
suggest which mental tasks result in the most robust EEG
signals. We attempted to include a variety of tasks to hopefully
draw on different EEG signals. The breath, song, listen, and
face tasks were performed with the participants’ eyes closed,
while the cube task was performed with the participants’
eyes open. In an authentication situation, the knowledge of
which task to perform could be considered the supplemental
knowledge security factor. In order to explore this further
though, two of the tasks, the song and face tasks, involved
an additional unique choice by the participant. We asked
participants to sit in a comfortable position and remain as
still as possible for all tasks with the intention of minimizing
signal pollution by electromyographic signals (EMG) (signals
generated by muscle movement). Participants used a wireless
remote held comfortably in their laps to begin each task when
they were ready.

B. Authentication Analysis

We performed two main analyses to test authentication:
a within-participants analysis to see how well authentication
would fare using different tasks of only a single user, and
a between-participants analysis to test authentication using
data from all users’ tasks. In both analyses, we assessed the
authentication ability of each task for each participant by
calculating the measures of false rejection rate (FRR), the rate
of rejecting the correct user, false acceptance rate (FAR), the
rate of accepting the incorrect user, and half total error rate
(HTER), the average of the FRR and FAR.

We analyzed the EEG signals collected during the tasks
using a support vector machine (SVM) classifier. Since past
work has shown that classification tasks in EEG-based BCI
are linear [14], we used LIBLINEAR, [15], a popular linear
SVC kernel. For each task, for each participant, 120 seconds of
data was collected in total across 10 trials of 12 seconds each.
We initially tried analyzing all 12 seconds of data per trial,



but found that removing the first 2 seconds and last second of
each trial to account for the transition to and from performing
a given task improved our results. Following [16], we used
logarithmic binning, an approach known to produce small
feature vectors with good linear classifiability. This approach
allowed us to average multiple power spectra over time. We
selected a feature resolution of 3 seconds, as this was the
shortest duration that produced good results in our test, and
then applied the logarithmic binning. After this preprocessing
we had 30 samples per participant, per task.

For the within-participants analysis, for each participant for
each task, 15 samples were randomly selected as training set
A, and 15 samples as testing set A. From the other 120 samples
(30 samples x 4 other tasks), 15 were randomly selected as
training set B, and another 15 as testing set B. The SVM
was then trained on classifying between training set A as a
model of correct authentication, and training set B as a model
of correct rejection. The FRR was calculated by testing the
SVM on testing set A (samples from the same task), resulting
in a list of 15 0’s (authenticate) and 1’s (reject) and taking the
mean of this list. Similarly, the FAR was calculated by testing
the trained SVM on testing set B (samples from other tasks)
and taking 1 minus the mean of the resulting list of 0’s and
1’s. We ran this random sampling and testing 1,000 times for
each participant/task.

The process was very similar for the between-participants
analysis, differing only in that the 15 samples used for training
set B and testing set B were randomly selected from all
other participants’ samples rather than from within the same
participant’s samples.

Finally, the HTER was calculated by averaging the FRR
and FAR for each task/participant pair. As these are binary
classifiers we can evaluate our results as falling somewhere
between a completely random binary classifier, which would
have an HTER of 0.50 and authentication accuracy of 50%,
and a perfect classifier, which would have an HTER of 0 and
authentication accuracy of 100%.

III. RESULTS

Results following the within-participants analysis method
discussed above are shown in Table II. These results are pre-
sented by task, averaged across all participants with standard
errors shown. The Best Task HTER measure was calculated
as the mean across participants using only each participant’s
lowest HTER among their tasks. The breakdown of best
tasks selected for this measure was: the breath task for 3
participants, the listen task for 3 participants, the face task
for 3 participants, and the cube task for 3 participants. The
song task did not perform best for any participant.

Results following the between-participants analysis method
are shown in Table III. These results are again presented
by task, averaged across all participants with standard errors
shown and the Best Task HTER measure was calculated in
the same way. The breakdown of best tasks selected for this
measure in this analysis was: the breath task for 2 participants,
the listen task for 5 participants, the face task for 3 participants,

TABLE II: Within-participant authentication results, means
across participants with standard errors.

Task FRR FAR HTER
Breath 0.380 ± 0.024 0.386 ± 0.022 0.383 ± 0.023
Song 0.425 ± 0.021 0.434 ± 0.017 0.430 ± 0.019
Listen 0.360 ± 0.035 0.385 ± 0.034 0.373 ± 0.034
Face 0.410 ± 0.031 0.416 ± 0.032 0.413 ± 0.031
Cube 0.367 ± 0.030 0.399 ± 0.023 0.383 ± 0.026
Best Task HTER 0.281 ± 0.030

TABLE III: Between-participant authentication results, means
across participants with standard errors.

Task FRR FAR HTER
Breath 0.278 ± 0.031 0.323 ± 0.037 0.300 ± 0.033
Song 0.288 ± 0.025 0.330 ± 0.026 0.309 ± 0.025
Listen 0.199 ± 0.034 0.258 ± 0.034 0.228 ± 0.034
Face 0.238 ± 0.027 0.290 ± 0.030 0.264 ± 0.028
Cube 0.237 ± 0.028 0.295 ± 0.031 0.266 ± 0.029
Best Task HTER 0.200 ± 0.03

and the cube task for 2 participants. Again, the song task did
not elicit the best HTER for any participants, though was a
close second for a few.

The post-experiment questionnaire results are displayed in
Figure 2. Each question answered via a a 7-point likert-type
scale. The questions asked were: "Please rate each of the
experimental tasks on ease of performing." (1 very difficult, 7
very easy); "Please rate each of the experimental tasks on how
engaging/interesting they were to perform." (1 very boring, 7
very engaging); "Please rate each of the experimental tasks on
how easy they would be to repeat often." (1 very difficult to
repeat, 7 very easy to repeat); and "Please rate each of the
experimental tasks on how likely you would be to use each in
a real-world authentication setting." (1 not at all likely to use,
7 very likely to use).

IV. DISCUSSION OF RESULTS

In the within-participants analysis, the listen task performed
best with an HTER of 0.373 followed by the breath and cube
tasks tied at 0.383. Using the best performing task for each
participant resulted in a much-improved HTER of 0.281. This
is a 43.8% reduction in error rate compared to a random
classifier, corresponding to a 71.9% authentication accuracy.

In the between-participants analysis, the listen and cube
tasks performed best with HTERs of 0.228 and 0.264, respec-
tively. Selecting the best task per participant again improved
this value to 0.200, a 60% reduction in error rate compared to
a random classifier, corresponding to an 80% authentication
accuracy.

Overall, the within-participants authentication performed
worse than the between-participants analogue. This result was
expected as it replicates previous scalp-based passthoughts
work by Chuang et al. that suggested single-channel EEG is
better at distinguishing between users compared to distinguish-
ing between signals of a single user. These performances were
worse than previous scalp-based experiments however, likely



Fig. 2: Post-experiment questionnaire mean responses on a
7-point likert-type scale.

due to the increased distance and absorption material between
the electrode and the cortex that produces the EEG signals.

The post-experiment questionnaire results indicated that
participants generally felt the tasks were easy to perform,
engaging, repeatable, and were at least somewhat likely to use
them for authentication. Two of the best performing tasks in
authentication, breath and listen, scored highly in ease of use
and repeatability and moderately in engagement and likeliness
of use. The other best performing task was the cube task,
though it scored the lowest in all four of these domains. The
song task scored highly in all four domains, but performed
the worst for authentication. It is important to note that in
order to achieve the Best Task HTERs users would not be able
to choose which task to perform as the best performing task
would be selected for each individually. In our results there
was not one single task that was best across participants, at
most 5 out of 12 of the participants had the listen task selected
for them in the between-participants analysis.

There are many avenues for continued research on this topic
with potential for improvement and expansion of the results.
Firstly, our data was collected using a fairly rudimentary setup
and the signal quality could be improved with custom-fit
earpieces or by adding additional sensors within the ear canal
or on the outside of the ear. Also, the 5 tasks we chose to test
here may not be the best for producing unique, distinguishable
signals. Other tasks may result in lower HTERs and higher
authentication accuracies; exploration of a much larger range
of different tasks to use would be very useful.

A major limitation to our study is that it does not address
how these results scale with number of users. Not only would
the distinguishability between users change as more users are
added into the system, but a given user’s best task may change
as well. One possibility to address this potential disadvantage
would be to use combinations of tasks, performed in a spec-
ified sequence for each user. This improvement would likely
come at a cost to usability however, as depending on what
situations this authentication method is used in users generally
want to authenticate into their devices with as little time and
effort as possible.

V. CONCLUSIONS

Using a consumer grade, single-channel EEG device, mini-
mally modified to sense from the ear, we analyzed the efficacy
of a simple scheme for user authentication. Specifically, we
achieved 43.8% reduction in half total error rate for within-
participants authentication, and a 60% reduction for between-
participants, compared with a random classifier. While the
achieved rates are not immediately viable for real-world au-
thentication applications, the results do show this method has
promise. We present a few avenues future work might pursue
in improving authentication for earEEG devices.
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